On odd covering systems with distinct moduli

نویسندگان
چکیده

منابع مشابه

On Odd Covering Systems with Distinct Moduli

A famous unsolved conjecture of P. Erdős and J. L. Selfridge states that there does not exist a covering system {as(mod ns)}s=1 with the moduli n1, . . . , nk odd, distinct and greater than one. In this paper we show that if such a covering system {as(mod ns)}s=1 exists with n1, . . . , nk all square-free, then the least common multiple of n1, . . . , nk has at least 22 prime divisors.

متن کامل

On Odd Covering Systems with Distinct

Abstract. A famous unsolved conjecture of P. Erdős and J. L. Selfridge states that there does not exist a covering system {as(mod ns)}ks=1 with the moduli n1, . . . , nk odd, distinct and greater than one. In this paper we show that if such a covering system {as(mod ns)}ks=1 exists with n1, . . . , nk all square-free, then the least common multiple of n1, . . . , nk has at least 22 prime divisors.

متن کامل

Covers of the Integers with Odd Moduli

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m divisible by none of 3, 5, 7, 11, 13 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2 ± p w...

متن کامل

Covers of the Integers with Odd Moduli and Their Applications

In this paper we construct a cover {as(mod ns)}s=1 of Z with odd moduli such that there are distinct primes p1, . . . , pk dividing 2 n1 − 1, . . . , 2k − 1 respectively. Using this cover we show that for any positive integer m divisible by none of 3, 5, 7, 11, 13 there exists an infinite arithmetic progression of positive odd integers the mth powers of whose terms are never of the form 2 ± p w...

متن کامل

New Linear Codes with Covering Radius 2 and Odd Basis

On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R = 2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r = 2k + 1 (the case q = 3, r = 4k + 1 was considered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2005

ISSN: 0196-8858

DOI: 10.1016/j.aam.2005.01.004